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We study the collapse transition of a two-dimensional, very long polymer. The 
model we consider is a lattice model where the chain is represented by a self- 
avoiding walk with nearest-neighbor attraction. By using the transfer matrix 
technique we calculate exactly the thermal and geometrical properties of the 
polymer on strips of finite width. We then use finite-size scaling to determine the 
values of the tricritical (0 point) exponents 

v~ = 0.55 + 0.01 

v,,= 1.15 • 

= 1.80 + 0.05 
V t 

We compare these results to the other values already proposed in the literature. 

KEY WORDS: 2D linear polymers, collapse transition, 0 point, tricritical 
exponents. 

1. I N T R O D U C T I O N  

The segments  of po lymer  chains  in so lu t ion  in teract  in a ra ther  complex  
way,~l 3) the excluded volume giving rise to a repuls ion  while long- range  
Van der  Waa l s  forces p roduce  an a t t rac t ion .  In  the h igh - t empera tu re  (good  
solvent)  regime, the repuls ive in te rac t ions  d o m i n a t e  and  the chains  are 
extended.  By decreas ing the t empe ra tu r e  one can enter  in the p o o r  solvent  
regime where the a t t rac t ive  forces domina te .  In this case one observes  
exper imenta l ly  the p rec ip i t a t ion  of  a p o l y m e r  aggregate.  ~1l One  can also 
observe the col lapse  of an i so la ted  p o l y m e r  chain  if the so lu t ion  is very 
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dilute. (4/ The study of this transition has been the subject of constant 
investigations for many years. 

Demixtion curves have been systematically studied, both experimen- 
tally and theoretically, by means of Flory Huggins approximationsJ ~) The 
collapse of a single-polymer chain has been investigated by enumerations 
on lattice models, (s) Monte Carlo simulations, (6) and different mean field 
type theories (7 ~0) with rather controversial results. (7'8) A systematic 
approach has been proposed by de Gennes (11) who related the collapse 
transition to the tricritical point of a magnetic spin model with zero com- 
ponent. With this analogy one predicts various scaling behaviors for the 
properties of an isolated polymer chain, which have been verified in Monte 
Carlo simulations. (~2) The logarithmic corrections, which are present 
because the dimension D = 3 is the upper critical dimension of the problem, 
have been calculated by field theory methods (13) or direct polymer 
approaches. (14) Some tricritical properties of the demixtion curves have also 
been studied by these methods. (13) 

The collapse transition in the two-dimensional case that can also be 
observed experimentally (~s) is a subject of more recent interest. (16'~7) In this 
work we study this problem by doing transfer matrix calculations on a lat- 
tice model and then using finitesize scaling. Our approach is very similar to 
the one which was used to study the collapse of branched polymers in 
Ref. [18]. Some preliminary results have been published elsewhere. (~9) 

The model we consider is the usual lattice model (5'~7) where the 
polymers are represented by nonintersecting, selfavoiding walks (SAWs) on 
a regular twodimensional lattice (we generally present our results in the 
case of the square lattice). An energy -b(~g) is associated to each con- 
figuration (g where b(Cd) is the number of pairs of neighboring occupied 
sites not adjacent on a chain. This energy represents the attractive forces 
between monomers while the excluded volume effects are taken into 
account by the selfavoiding constraint. This model is generally believed to 
contain the essential features of the collapse transition. 

In the following we restrict ourselves to the study of the properties of 
one single very long polymer. 

The partition function of a polymer of l links and a fixed origin is 
given at a temperature T(/~ = T -~) by 

z ,( T)  = ~ e ~b( ~ l = ~ w( l, b) e ~b (1) 
%0 b 

where w(l, b) is the number of configurations of a SAW with fixed origin of 
length I and energy - b .  In the thermodynamic limit (l ~ oo ) this partition 
function behaves asymptotically like 

z,( T)  ~ [/~(T)]' (2) 
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(when T =  o%/~ is the connectivity constant of the lattice). The free energy 
per monomer of a very long polymer with fixed origin is thus simply given 
by 

f ( T ) = - - T  lim 1 ,~  co 7 log zz(T ) = --Tlog/~(T)  (3) 

All the thermodynamic quantities of interest (energy, entropy, specific 
heat) can be obtained from the knowledge o f f  We see that these quantities 
display a singularity at a certain temperature 0. 

In a polymer problem one is also interested in geometrical quantities. 
The most important geometrical property of a polymer is its mean square, 
end to end distance 

~q 

where/~t(W) is the end to end distance of a polymer of length l in the con- 
figuration c~ and Wo~(l, b) is the number of configurations of a polymer of 
length l and energy - b  with extremities in o and /?. The asymptotic 
behavior of this mean square, end to end distance defines the exponent v 

(1~12) ~/2,, (5) 

At infinite temperature, the energies of the configurations play no role and 
the exponent v is given by v = VSA w = ~_.t2o)We see that this exponent jumps 
at the temperature 0. For  T>O, one has V=VSAW and for T<O, 
v = 1/D = ~,. the chain being collapsed. At the temperature 0, this exponent 
has a nontrivial value v,. In a polymer problem one can also introduce the 
exponent 7, which describes the corrections to (2) by 

zz( T) ~ [#( T) ]' F l (6) 

This exponent intervenes in particular in the correlation function between 
the extremities of the polymer (2'3) As in the case of the exponent v one has 
7 = 7sAw = 43/32 (see Ref. 20) for T >  0 while 7 takes a nontrivial value 7, 
for T =  0. The meaning of 7 in the collapsed phase T <  0 is not clear to us. 

At temperature T the most important thermal and geometrical proper- 
ties of a single very long polymer depend thus simply on /~(T), v and 7. 
These quantities can be obtained by considering the generating function (18t 

go~(X, T) = ~ xle~bW o~(l,b) (7) 
1,b 

822,'45,!3-4-5 
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One c a n  s h o w  (2'3'21) that for x<xC(T)=l/#(T) this function decreases 
exponentially with the distance [/~1 like 

go~(X, T) ~ exp ~(x, T) (8) 

This defines a correlation length ~(x, t) which diverges when x~--+x"(T) 
with exponent v 

~(x, T) ~ I x -  x ' (  T)I -~ (9) 

In a similar way, the function 

G(x, T ) = ~  x'z,(T)=~ go,q(x, T) (10) 
l ,q 

diverges when x ~ x~(T) with exponent 7 

G(x, T)~ ]x-  xC(T)l-7 (11) 

One sees thus that the knowledge of go~,(x, T) allows the determination of 
the thermal and geometrical properties of a very long polymer. This 
function will play a central role in our calculation. 

The paper is organized as follows. In Section 2 we calculate the 
properties of a very long polymer on strips. In Section 3 we apply the 
phenomenological renormalization to the determination of the critical line 
x~(T)= 1/#(T) and its exponents. We then interprete the 0 point as a 
tricritical point with respect to the two parameters T and x and we deter- 
mine its characteristics in Section 4. In the conclusion we summarize our 
results and discuss them. 

2. T H E R M O D Y N A M I C  A N D  G E O M E T R I C A L  PROPERTIES OF A 
VERY LONG P O L Y M E R  ON STRIPS 

In this section we determine the properties of a polymer on strips of 
width n and periodic boundary conditions in the thermodynamic limit 
(l ~ oo). As explained in the introduction, these properties can be obtained 
from the knowledge of go~(X, T). On a strip, this function can be calculated 
using the transfer matrix technique. We don't describe in details the 
calculation here since it is a simple generalization of what has already been 
done for interacting animals (18) and usual SAWs. (='231 Let us simply men- 
tion that because of the nearestneighbor attraction, the information to be 
keept is more important than for usual SAWs and thus the size S.  of the 
transfer matrix grows more rapidly with the width n of the strip. We have 
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seen that  the behavior  of go~ when j/?] ~ oo defines a corre la t ion length 4. 
On a strip of  width n it is given by 

- 1  
~.(x, T) (12) 

log 2(x, T) 

where 2 is the largest eigenvalue of the transfer matrix.  This correlat ion 
length diverges at a value x = x;i(T), which is the smallest  posit ive root  of  

2 [ x ; ( T ) ,  T]  = 1 (13) 

and the free energy per m o n o m e r  of a very long po lymer  is thus given by 

f , , (T) = T l o g  x~s (14) 

All the t he rmodynamic  quantit ies can be deduced f rom f,  i.e., f rom the 
values of x,;(T). We consider, for example,  the specific heats which can be 
obta ined by 

c , ( t )  = --Td~fn= _f12 l o g x ;  I (15) dT 2 

We have represented on Fig. 1 these specific heats versus fl = T T in the 
case of  the square lattice. Fig. l (a )  cor responds  to strips oriented in the 
(1, 0) direction and Fig. l (b)  to strips oriented in the (l ,  1) direction. Such 
diagonal  strips have already been used in transfer  matr ix  calculations. (lsl 
For  strips in the (1, 0) direction we have been limited to a width n = 7, in 
which case S,  = 202. Fo r  strips in the (1, 1) direction, the m a x i m u m  width 
is n = 6 where  S,~ = 330. 

One can see on this figure that  the specific heats c~ present  a 
m a x i m u m  a round  fl -~ 0.7. However ,  this m a x i m u m  is not  very marked  and 
it is not  clear on these curves whether  the specific heats c n will finally 
diverge in the limit n ~ oo. We come to this point  later. The curves of 
Fig. 1 also present  par i ty  effects. This means  that  the results converge in a 
regular  way with the strip width n only when one compares  widths of the 
same parity. This is par t icular ly  m a r k e d  in the case of diagonal  strips 
(Fig. lb). Such effects not  present  in the case of b ranched  polymers  (~8) 
make  the analysis of  the results more  difficult. 

Because a strip is a one-dimensional  system the exponents  v and  7 
have simple values v = y = 1. The mean  size of the po lymer  is p ropor t iona l  
to its length (~2) 

(,ff~,[)=l{~l~ T]} 1 
O l o g x  (16) 
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Fig. 1. Plot of the specific heat per monomer  of a very long polymer c,, versus the inverse 
temperature/~ = T -1 for different strip widths. (a) Strips in normal  (1, 0) direction, (b) strips 
in diagonal (1, t )  direction. The lattice is the square lattice. 
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and the constant of proportionality gives the density of a very long 
polymer on the strip (ls'19) 

1 8 log 2[x~(T), T] 
p,(T) = -  (17) 

n 8 log x 

We give in Fig. 2 the curves representing p,, versus fi = T ~ in the case of 
the square lattice and strips oriented in normal or diagonal direction. In 
the small fl (high-temperature) region, the densities decrease regularly with 
the strip width n, suggesting that the polymer is extended. On the contrary, 
for fl > 0.7, these densities saturate to a finite value. This suggests that the 
polymer is collapsed for low temperatures. 

We finally introduce the coefficient of thermal expansion 

ldp,, 
t,, = ( 1 8 )  

p,, dT 

We have represented this coefficient versus fi = T-~ in Fig. 3. The curves 
present a sharp maximum around the value fl ~-0.7 corresponding to the 
apparition of a finite polymer density in Fig. 2. This maximum is par- 
ticularly marked in the case of diagonal strips. 

These results suggest thus that the properties of a very long polymer 
have a singularity at a temperature 0 ~ 0 . 7 - 1 ~  1.4, the low-temperature 
region corresponding to a collapsed phase. We complete the study of these 
properties by using the phenomenological renormalization. 

3. S T U D Y  OF T H E  C R I T I C A L  LINE U S I N G  T H E  
P H E N O M E N O L O G I C A L  R E N O R M A L I Z A T I O N  

We have seen in the Introduction how the function go~(x, T) defines a 
correlation length which diverges as x ~-+ x~'(T) with the exponent v. When 
T =  oo this corresponds to the second-order phase transition of the 
magnetic spin model with zero component (2'21) which has already been 
studied using the phenomenological renormalization in Ref. [23]. We 
apply here the same method to the case T#c~ .  We suppose that the 
correlation length (12) ~,, at fixed T has the following finite-size scaling 
form (24) 

d_,(x, T)~-,nFr ,,l/v} (19) 

c K N c  for n >>1 and x - x  <{ 1. Successive estimates xn(T ) of x"(T) can thus be 
obtained by solving the equations 

~.(2~, T) _ ~n + 2(2~, T) 
(2o) 

n n + 2  
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Plot of the density of a very long polymer p,, versus /~ for different strip widths. 
(a) Strips in normal direction, (b) strips in diagonal direction. 
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Coefficient of thermal expansion t~ versus /~ for different strip widths. (a) Strips in 
normal direction, (b) strips in diagonal direction. 
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for increasing n. In formula (20) we compared  the sizes n and n + 2 because 
of parity effects. Successive approximat ions  of  the critical line obtained in 
this way are given in Fig. 4 for the case of  normal  strips (very similar 
results were obtained for diagonal  strips). One  can see the general good  
convergence of the results, particularly at low temperatures.  The two 
extremities (fl ~ 0 and fl ~-* oe ) of  this critical line are known.  

For  f l = 0  (T=oe) one has (25) xC=l / /~SQ=0.3790528_0 .0000025 ,  
where #sQ is the connectivity constant  of the square lattice while for fl ~ oo 
(T~-+0), the infinite polymer  must  cover all the lattice and the equat ion of 
the critical line in this region is 

e /~ 
xC(T) ,,(.) (fl  (21) 

t~SQ 

where ~'SQ' (U) is the connective constant  of Hamil tonian  walks (i.e., SAWs 
which must  visit all the sites) on the square lattice (26/ 
#(I~) 1.4725 + 0.0005. In  a similar way we can get estimates of v by SQ = 

1 + - -  = l o g  ( 2 2 )  

0,3/~ 

0.29 

0.23 

I I 

0.5 1 

Fig. 4. Plot of the values 9~'~ obtained by a two strip renormalization with sizes n and n + 2 
(formula 20). The strips are oriented in normal direction. The convergence is particularly 
rapid at low temperatures (high fi). 
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We have represented the successive values of the exponent v obtained in 
this way for different sizes n versus the inverse temperature fl = T - t  in 
Fig. 5. As one can see, these exponents in the hightemperature region are 
more and more constant, tending to the value Vsaw = ~- Similarly in the 
lowtemperature region they tend to the collapsed value v=�89 When n 
grows, the variation of v becomes more and more rapid and concentrated 
in a small region a r o u n d / ? ~  0.7. As in the case of animals, (18l these curves 
intersect almost at the same point for normal strips. Because of parity 
effects, which are more marked in this case, the curves for diagonal strips 
intersect at points which are different but rather close. These intersections 
suggest a value of v, around 0.55. 

The ratio n/rc~ at x'(T) gives--by conformal invariance 
arguments~27)--the exponent I/= 2 - 7 / v .  However, this method for deter- 
mining 7, which worked rather well in the case of SAWs, 128) does not give 
conclusive results here, the estimates converging very slowly with increas- 
ing size. We do not present these results here. 

As in the case of branched polymers,/is) one can give a physical mean- 
ing to all the (fl, x) plane of Fig. 4. We consider a polymer which spans 

V n I i - -  

5 
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050 1 

t T 

0.50 1 

(a) (b) 
Fig. 5. Plot of the exponent v~ obtained by a two-strip renormalization with sizes n and 
n + 2 (formula 22). When n increases, this exponent converges to the SAW value v = �88 for high 
temperatures (low fl) and to the collapsed value v = �89 for low temperatures (high fl). The cur- 
ves cross around the value v = 0.55. (a) Strips in normal direction, (b) strips in diagonal direc- 
tion. 
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from column 0 to the column L of the strip at a temperature T. The length 
of the polymer can fluctuate and is controlled by the fugacity x. It is easy 
to s h o w  (181 that the grand canonical potential of this problem is, for L large 

0 = -TL log 2(x, T) (23) 

and the pressure is given by 

p = T l o g  2(x, T) (24) 
n 

A point in the (fl, x) plane corresponds thus to the situation where an 
infinite polymer spans through the strip at a temperature T = f l  1 and a 
pressure p given by (24). The density of this polymer is (18) 

1 31og2 
P = n 0 log x (25) 

and its free energy per monomer is (18) 

f=  T[ l~176 log x] )~'] 1 l ~  (26) 

In this picture the critical line corresponds to the isobar p = 0. The region 
x>xC(T) corresponds to a positive pressure while the region x <  xC(T) 
corresponds to a negative pressure, i.e., to a force that swells the polymer. 
By crossing the isobar p =  0 in the high-temperature region one has a 
second-order phase transition while the crossing in the low-temperature 
region gives rise to a first-order phase transition with a jump of the density 
p (25). This can be seen on Fig. 6 where we have represented the densities 
p versus x for several values of the temperature. We note that because of 
formula (25) the jump of density in the low-temperature phase must coin- 
cide with the point where the correlation length (12) diverges (i.e., with 
point p -- 0). A similar effect is observed for branched polymers. (18) 

We should note here that, because for T <  0 the transition x~--~ xC(T) 
is a first-order transition, the correlation length ~, does not have the finite- 
size scaling form (19) in the low-temperature region but a more com- 
plicated one depending in particular on the parity of the strip width n and 
on the geometry of the strip. The application of eq. (20) in this region of 
temperatures gives, however, correct estimates of x'(T) simply because the 
correlation length of the two-dimensional system diverges at this point. In 
a similar way the exponent �89 obtained in this region can be considered as 
the exponent of a discontinuity fixed point. (29~ With the introduction of the 
fugacity x, the 0 point which was shown in Section 2 to be a point of 
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Fig. 6. Variation with x of the density p (25) at different temperatures and for different strip 
widths. This variation is continuous at high temperatures while the curves at low temperatures 
indicate a discontinuity for n --, oo. The strips are taken in normal direction. 

second-orde r  phase  t rans i t ion  for a very long po lymer  can also be con- 
s idered in the (/?, x)  p lane  as the end po in t  of a line of second-orde r  phase  
t ransi t ions,  i.e., as a t r icr i t ical  point .  We  de te rmine  the character is t ics  of  

this t r icr i t ical  po in t  in the fol lowing section. 

4. D E T E R M I N A T I O N  OF T H E  e P O I N T  A N D  ITS T R I C R I T I C A L  
E X P O N E N T S  

F o r  a comple te  descr ip t ion  of the t r icr i t ical  po in t  (3~ we must  deter-  
mine the t empera tu re  0 and  calcula te  the values of  three independen t  
exponents .  We  have a l r eady  in t roduced  the exponents  v, and  7~ which 
describe the geometr ica l  p roper t ies  of a very long po lyme r  at  the 0 point .  
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In the following we also calculate the exponent vu, which is the exponent of 
a thermal length (persistance length(18'3~ This represents the correla- 
tions of thermal fluctuations and diverges like I T - 0  I- ~'~ All other exponents 
can be obtained using these three exponents and the scaling laws. (3~ 

In the case of animals (1~) or of the tricritical Ising model, (3~) these 
exponents were calculated by rather sophisticated techniques using three 
size renormalizations or renormalizations with two correlation lengths. 
These methods did not work here because of the parity effects and because 
the results converged slowly with increasing size. We have obtained better 
results by considering the finite-size scaling form of the geometrical quan- 
tities. 

We first consider the density p,, (17). In the neighborhood of tem- 
perature 0 one expects the finite-size scaling form (valid for n ,> 1 and 
T - O ~ I )  

pn( T) ~ n(lml-2Fo[ ( T -  O) n ~/'u] (27) 

We have thus calculated the quantities 

[X,(T)]  t - I~  ~- 2 (28) 
log[n + 2/n] 

which are plotted versus ] /= T-~ in Fig. 7. Because of formula (27) one 
expects that the curves for different n will cross at fi~= 0-1 and that the 
values of J(~ at the intersection will give v,. As can be seen on Fig. 7(a), 
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055 v t 

J n=l 

0501 

065 

X~ 

O60 

055 

0501 

055 [I c 075 13 095 055 [~c 075 [3 0.95 

(a) (b) 

Fig. 7. Plot of J(n (28) versus //. For large n the curves should intersect at (/~t vt). Our 
estimate is indicated with its error bars (See formula 29). (a) Strips in normal direction, (b) 
strips in diagonal direction. 
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these curves cross rather well in the case of normal strips. From this figure 
we deduce the estimates 

( t i c )  1 = 0 = 1.42 _+ 0.04 and v, = 0.55 _+ 0.01 (29) 

The curves for diagonal strips don't cross so well (Fig. 7b) because of the 
parity effects. There is an intersection 1-3 for n odd and an intersection 2 4 
for n even. It is difficult to extrapolate these results with only one point for 
each parity. We note however that the two intersections are rather close to 
(29), the intersection 2M for the largest sizes being in good agreement with 
vr=0.55. We have also done similar calculations in the case of the 
triangular or hexagonal lattices. The parity effects were also marked in 
these cases but the results were compatible with (29). We note here that 
because of formulas (12) and (17) the quantities X,(T) of formula (28) are 
very similar to the v,(T) of eq. (22). The curves of Fig. 5 crossed also at 
values compatible with (29). 

We now consider the coefficient of thermal expansion t, (18). Its finite- 
size scaling form is 

t,,( T) ~ n l / " " F , [  ( T - O) n m' ' ]  (30) 

for n >> 1 and T - 0  < 1. The quantity Yn defined by 

[ Y,(T)] ' - log[ t, + 2( T)/t,( T) ] (31) 
log[n + 2/n] 

varies slowly with the temperature T, and the curves representing Y,, do 
not cross very well. For getting an estimate of v, we have thus preferred the 
following method. We have calculated the Y,,(O) for various sizes n in the 
case of the square lattice with the two strip directions, the hexagonal and 
the triangular lattices (the 0 points for these two lattices were evaluated in 
a way similar to formula 29). We have plotted these Y, versus n -1 in 
Fig. 8, a choice which gave rather smooth curves for all the data. The 
variation of Yn due to the error bars in the determination of 0 is smaller 
than the size of the points in this figure. From this figure we deduce 

v, = 1.15 _ 0.15 (32a) 

From the values of v. and v, (29) one can get the exponent ~ of the specific 
heat by the relation 2 - c ~ =  v,/v, (see Ref. 18) 

Cr = -0.1 + 0.1 (32b) 
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Fig. 8, Plot of the quantities Y~(O) (31) versus n ~. 0 ,  Square lattice and strips in normal 
direction, x ,  square lattice and strips in diagonal direction, 0 ,  hexagonal lattice, i ,  
triangular lattice. The final estimate of v, is indicated with its error bars (see formula 32). 

Our central value is negative, suggesting that the specific heat does not 
diverge at the 0 point. This explains the smooth maxima observed in Fig. 1. 
From v, (32a) and v, (29) we deduce also the value of the cross-over 
exponent 

~bt =--=v' 0.48 + 0.07 (33)  
V u 

We finally consider the generating functions defined in (10) 

G(x, T) = ~ ~ xle/3bwo~(l, b) (34) 
t,b 

We have shown (2sl how such functions can be calculated by using a trans- 
fer matrix technique in the case of SAWs. It is easy to generalize this 
method to the case of interacting polymers. As was remarked (28) the 
function G(x, T) depends on polymers of every length. However, its 
asymptotic behavior (11) when x~---,x'(T) depends on very long polymers 
only. On a strip one calculates a function Gn(x, T). When x~--,x~(T), Gn 
behaves as 

Rn(T) G,(x, T) (35) 
1 - , ~ ( x ,  T )  

and it diverges for x = x;(T). The residue Rn(T) depends only on the very 
long polymers on the strip and the results obtained by considering Rn con- 
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verge more  rapidly with increasing n than the results obtained with G,,. The 
finite-size scaling form of R n is (28) 

R,,( T) ~ n(Y'/"'I-IFR[ ( T -  O) rl 1/'vu] (36) 

for n > 1 and T -  0,~ 1. We have thus calculated the quantities 

l og  ER,, + 2(T)/Rn( T)] Z~(T) = ~- 1 ( 3 7 )  
l og [n  + 2/n] 

which are plotted versus fl = T ~ in Fig. 9 in the case of  normal  strips. On  
this figure one can observe several crossings. These crossings are in the 
ne ighborhood  of  the critical temperature 0 (29). It is, however, clear from 
this figure that the results have not  yet completely converged. (We have 
been limited to the strip width n = 6 here since the size of  the transfer 
matrix for calculating R n grows more  rapidly than for calculating the 
correlat ion lengths(28)). A reasonable estimate is 

,/,/v, = 1.80 -+ o .o s  ( 3 s )  

Using (29) one has also 

y , =  1 +0 .05  (39) 

Fig. 9. 

7In 

1.75 

1.25 
0.50 

i 7 

n=l 

pc 

0.60 0.70 p 

Plot of Z,, (37) versus fl for different widths n in the case of normal strips. We have 
indicated our estimate 7~/v, with its error bars (see formula 38). 
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5. C O N C L U S I O N  

Using the transfer matrix technique we have thus determined the 
properties of a lattice model with two parameters, the temperature T=/~ 1 
and the fugacity x. We have shown the existence of a 0 point where the 
thermal and geometrical properties of a very long polymer display a 
singularity. This point can also be considered as a tricritical point in the 
(T, x) plane and we have determined the exponents of this point using 
finite-size scaling. It would also be of interest to calculate the properties of 
a system with several polymers. This could be done by introducing another 
fugacity y conjugated to the number of polymers and by generalizing the 
transfer matrix technique for several polymers already introduced in 
Ref. [28] in the case of non-interacting, self-avoiding walks. We plan to do 
such a calculation in the future. 

We now compare our results with those which have already been 
proposed in the literature. The tricritical exponents for a magnetic spin 
system with s component spin variables have been calculated to lowest 
order in e ' - - 3 -  D (32) with the results for the polymer problem (s = 0) in 
two dimensions (e '=  1) 

v t = 0.5055 (40a) 

%= v,/~,=0.7944 (40b) 

= 2 - r/t = 1.9986 (40c) 
Vt 

(The results 40a and 40c are given to the second order in e' and the result 
40b to the first order). These exponents (40) have also been recently 
recovered in a direct polymer approach. (14) The results of formulas (40) 
don't agree well with our transfer matrix calculation. This is not surprising 
since there is a similar difference between the results of the asymptotic e' 
expansion for the two-dimensional tricritical Ising model (s = 1) exponents 
and the value of these exponents which are now considered to be exact. (3~ 
The values (40) were initially found in agreement with Monte Carlo 
calculations (17), but we think that the results of these calculations are dif- 
ficult to interprete because the algorithms used do not sample in an 
efficient way the compact configurations which are the most important in 
the low-temperature phase. Moreover, in Monte Carlo simulations one 
works with rather short chains and some surface or extremity effects might 
be present (surface effects have already been observed in Monte Carlo 
simulations for branched polymers(g3)). 
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Exponents v, and r/, have later been calculated to the next order ~34) 
giving 

vu = vt/~br = - 1.0339 (41 a) 

7-2' = 2 - qt = 1.980 (41b) 
Vt 

However, the correction to vu is now too important  since this exponent 
becomes negative (a similar effect is observed for the tricritical Ising model 
with s = 1 ~34!). We think that the way the e' series behaves is not completely 
understood in this case, so it is difficult to extract information from the e' 
expansion at D = 2. A recent conjecture (35~ identifies the 2D linear polymers 
at the 0 point with the indefinitely growing self-avoiding walks 136) and 
predicts the values 

v~ = 0.567 +_ 0.003 (42a) 

~, = 1 (exact) (42b) 

The value (42b) is in agreement with our result (39). The value (42a) seems 
slightly too high when compared to (29), but we think that the precision of 
the results (42a) and (29) is not sufficient to rule out this conjecture. The 
exponent vt has also been related to the exponents of other kinetic 
walks, 137/ but these predictions don't  agree well with our result. Finally, 
experiments on 2D polymer monolayers ~15~ gave a value v ,=0 .56+0 .01 ,  
which is in agreement with our calculation. 

In conclusion, we would like to mention that the collapsed phase of 
our model has some features which are reminiscent from frustrated systems 
such as a very strong dependence on boundary conditions or a nonnull 
entropy at zero temperature. This suggests that the collapse transition 
could perhaps be interpreted as a spin-glass phase transition. We hope to 
sharpen this analogy in the future. 
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